Bounds for Integral j-Invariants and Cartan Structures on Elliptic Curves

نویسندگان

  • Yuri Bilu
  • Pierre Parent
چکیده

We bound the j-invariant of integral points on a modular curve in terms of the congruence group defining the curve. We apply this to prove that the modular curve Xsplit(p ) has no non-trivial rational point if p is a sufficiently large prime number. Assuming the GRH, one can replace p by p. AMS 2000 Mathematics Subject Classification 11G18 (primary), 11G05, 11G16 (secondary).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE FIELD OF DEFINITION OF p-TORSION POINTS ON ELLIPTIC CURVES OVER THE RATIONALS

Let SQ(d) be the set of primes p for which there exists a number field K of degree ≤ d and an elliptic curve E/Q, such that the order of the torsion subgroup of E(K) is divisible by p. In this article we give bounds for the primes in the set SQ(d). In particular, we show that, if p ≥ 11, p 6= 13, 37, and p ∈ SQ(d), then p ≤ 2d + 1. Moreover, we determine SQ(d) for all d ≤ 42, and give a conject...

متن کامل

Computing Integral Points on Elliptic Curves

By a famous theorem of Siegel [S], the number of integral points on an elliptic curve E over an algebraic number field K is finite. A conjecture of Lang and Demjanenko [L3] states that, for a quasiminimal model of E over K, this number is bounded by a constant depending only on the rank of E over K and on K (see also [HSi], [Zi4]). This conjecture was proved by Silverman [Si1] for elliptic curv...

متن کامل

A descent method for explicit computations on curves

‎It is shown that the knowledge of a surjective morphism $Xto Y$ of complex‎ ‎curves can be effectively used‎ ‎to make explicit calculations‎. ‎The method is demonstrated‎ ‎by the calculation of $j(ntau)$ (for some small $n$) in terms of $j(tau)$ for the elliptic curve ‎with period lattice $(1,tau)$‎, ‎the period matrix for the Jacobian of a family of genus-$2$ curves‎ ‎complementing the classi...

متن کامل

Integral points of a modular curve of level 11

Let Xns(11) denote the modular curve associated to the normalizer of a non-split Cartan subgroup of level 11; see [10, Appendix]. This curve has genus 1, is defined over Q and parametrizes elliptic curves with a certain level 11 structure. The interest of Theorem 1.1 lies in the fact that Xns(11) is isomorphic over Q to the curve E and that rational points (x, y) on E for which x/(xy − 11) is i...

متن کامل

Integral Points on Elliptic Curves and 3-torsion in Class Groups

We give new bounds for the number of integral points on elliptic curves. The method may be said to interpolate between approaches via diophantine techniques ([BP], [HBR]) and methods based on quasi-orthogonality in the Mordell-Weil lattice ([Sil6], [GS], [He]). We apply our results to break previous bounds on the number of elliptic curves of given conductor and the size of the 3-torsion part of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008